3.587 \(\int \frac{\cos ^2(c+d x) (A+C \cos ^2(c+d x))}{(a+b \cos (c+d x))^4} \, dx\)

Optimal. Leaf size=304 \[ \frac{a \left (a^2 b^4 (A-8 C)+7 a^4 b^2 C-2 a^6 C+4 b^6 (A+2 C)\right ) \tan ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a+b}}\right )}{b^4 d (a-b)^{7/2} (a+b)^{7/2}}-\frac{\left (a^2 C+A b^2\right ) \sin (c+d x) \cos ^2(c+d x)}{3 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^3}-\frac{\left (-a^4 b^2 (3 A+28 C)+2 a^2 b^4 (7 A+17 C)+9 a^6 C+4 A b^6\right ) \sin (c+d x)}{6 b^3 d \left (a^2-b^2\right )^3 (a+b \cos (c+d x))}-\frac{a \left (a^2 b^2 (3 A+8 C)-3 a^4 C+2 A b^4\right ) \sin (c+d x)}{6 b^3 d \left (a^2-b^2\right )^2 (a+b \cos (c+d x))^2}+\frac{C x}{b^4} \]

[Out]

(C*x)/b^4 + (a*(a^2*b^4*(A - 8*C) - 2*a^6*C + 7*a^4*b^2*C + 4*b^6*(A + 2*C))*ArcTan[(Sqrt[a - b]*Tan[(c + d*x)
/2])/Sqrt[a + b]])/((a - b)^(7/2)*b^4*(a + b)^(7/2)*d) - ((A*b^2 + a^2*C)*Cos[c + d*x]^2*Sin[c + d*x])/(3*b*(a
^2 - b^2)*d*(a + b*Cos[c + d*x])^3) - (a*(2*A*b^4 - 3*a^4*C + a^2*b^2*(3*A + 8*C))*Sin[c + d*x])/(6*b^3*(a^2 -
 b^2)^2*d*(a + b*Cos[c + d*x])^2) - ((4*A*b^6 + 9*a^6*C + 2*a^2*b^4*(7*A + 17*C) - a^4*b^2*(3*A + 28*C))*Sin[c
 + d*x])/(6*b^3*(a^2 - b^2)^3*d*(a + b*Cos[c + d*x]))

________________________________________________________________________________________

Rubi [A]  time = 1.08444, antiderivative size = 304, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 33, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.182, Rules used = {3048, 3031, 3021, 2735, 2659, 205} \[ \frac{a \left (a^2 b^4 (A-8 C)+7 a^4 b^2 C-2 a^6 C+4 b^6 (A+2 C)\right ) \tan ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a+b}}\right )}{b^4 d (a-b)^{7/2} (a+b)^{7/2}}-\frac{\left (a^2 C+A b^2\right ) \sin (c+d x) \cos ^2(c+d x)}{3 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^3}-\frac{\left (-a^4 b^2 (3 A+28 C)+2 a^2 b^4 (7 A+17 C)+9 a^6 C+4 A b^6\right ) \sin (c+d x)}{6 b^3 d \left (a^2-b^2\right )^3 (a+b \cos (c+d x))}-\frac{a \left (a^2 b^2 (3 A+8 C)-3 a^4 C+2 A b^4\right ) \sin (c+d x)}{6 b^3 d \left (a^2-b^2\right )^2 (a+b \cos (c+d x))^2}+\frac{C x}{b^4} \]

Antiderivative was successfully verified.

[In]

Int[(Cos[c + d*x]^2*(A + C*Cos[c + d*x]^2))/(a + b*Cos[c + d*x])^4,x]

[Out]

(C*x)/b^4 + (a*(a^2*b^4*(A - 8*C) - 2*a^6*C + 7*a^4*b^2*C + 4*b^6*(A + 2*C))*ArcTan[(Sqrt[a - b]*Tan[(c + d*x)
/2])/Sqrt[a + b]])/((a - b)^(7/2)*b^4*(a + b)^(7/2)*d) - ((A*b^2 + a^2*C)*Cos[c + d*x]^2*Sin[c + d*x])/(3*b*(a
^2 - b^2)*d*(a + b*Cos[c + d*x])^3) - (a*(2*A*b^4 - 3*a^4*C + a^2*b^2*(3*A + 8*C))*Sin[c + d*x])/(6*b^3*(a^2 -
 b^2)^2*d*(a + b*Cos[c + d*x])^2) - ((4*A*b^6 + 9*a^6*C + 2*a^2*b^4*(7*A + 17*C) - a^4*b^2*(3*A + 28*C))*Sin[c
 + d*x])/(6*b^3*(a^2 - b^2)^3*d*(a + b*Cos[c + d*x]))

Rule 3048

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (C_.)*s
in[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[((c^2*C + A*d^2)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[
e + f*x])^(n + 1))/(d*f*(n + 1)*(c^2 - d^2)), x] + Dist[1/(d*(n + 1)*(c^2 - d^2)), Int[(a + b*Sin[e + f*x])^(m
 - 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(b*d*m + a*c*(n + 1)) + c*C*(b*c*m + a*d*(n + 1)) - (A*d*(a*d*(n +
 2) - b*c*(n + 1)) - C*(b*c*d*(n + 1) - a*(c^2 + d^2*(n + 1))))*Sin[e + f*x] - b*(A*d^2*(m + n + 2) + C*(c^2*(
m + 1) + d^2*(n + 1)))*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C}, x] && NeQ[b*c - a*d, 0] &
& NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 0] && LtQ[n, -1]

Rule 3031

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])*((A_.) + (B_.)*sin[(e
_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[((b*c - a*d)*(A*b^2 - a*b*B + a^2*C)*
Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1))/(b^2*f*(m + 1)*(a^2 - b^2)), x] - Dist[1/(b^2*(m + 1)*(a^2 - b^2)),
 Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[b*(m + 1)*((b*B - a*C)*(b*c - a*d) - A*b*(a*c - b*d)) + (b*B*(a^2*d + b
^2*d*(m + 1) - a*b*c*(m + 2)) + (b*c - a*d)*(A*b^2*(m + 2) + C*(a^2 + b^2*(m + 1))))*Sin[e + f*x] - b*C*d*(m +
 1)*(a^2 - b^2)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && Ne
Q[a^2 - b^2, 0] && LtQ[m, -1]

Rule 3021

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f
_.)*(x_)]^2), x_Symbol] :> -Simp[((A*b^2 - a*b*B + a^2*C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(m +
 1)*(a^2 - b^2)), x] + Dist[1/(b*(m + 1)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[b*(a*A - b*B + a*
C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A*b - a*B + b*C)*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e,
 f, A, B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]

Rule 2735

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(b*x)/d
, x] - Dist[(b*c - a*d)/d, Int[1/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d
, 0]

Rule 2659

Int[((a_) + (b_.)*sin[Pi/2 + (c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x
]}, Dist[(2*e)/d, Subst[Int[1/(a + b + (a - b)*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}
, x] && NeQ[a^2 - b^2, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{\cos ^2(c+d x) \left (A+C \cos ^2(c+d x)\right )}{(a+b \cos (c+d x))^4} \, dx &=-\frac{\left (A b^2+a^2 C\right ) \cos ^2(c+d x) \sin (c+d x)}{3 b \left (a^2-b^2\right ) d (a+b \cos (c+d x))^3}-\frac{\int \frac{\cos (c+d x) \left (2 \left (A b^2+a^2 C\right )-3 a b (A+C) \cos (c+d x)-3 \left (a^2-b^2\right ) C \cos ^2(c+d x)\right )}{(a+b \cos (c+d x))^3} \, dx}{3 b \left (a^2-b^2\right )}\\ &=-\frac{\left (A b^2+a^2 C\right ) \cos ^2(c+d x) \sin (c+d x)}{3 b \left (a^2-b^2\right ) d (a+b \cos (c+d x))^3}-\frac{a \left (2 A b^4-3 a^4 C+a^2 b^2 (3 A+8 C)\right ) \sin (c+d x)}{6 b^3 \left (a^2-b^2\right )^2 d (a+b \cos (c+d x))^2}-\frac{\int \frac{-2 b \left (2 A b^4-3 a^4 C+a^2 b^2 (3 A+8 C)\right )+a \left (3 a^4 C+4 b^4 (2 A+3 C)-a^2 b^2 (3 A+10 C)\right ) \cos (c+d x)-6 b \left (a^2-b^2\right )^2 C \cos ^2(c+d x)}{(a+b \cos (c+d x))^2} \, dx}{6 b^3 \left (a^2-b^2\right )^2}\\ &=-\frac{\left (A b^2+a^2 C\right ) \cos ^2(c+d x) \sin (c+d x)}{3 b \left (a^2-b^2\right ) d (a+b \cos (c+d x))^3}-\frac{a \left (2 A b^4-3 a^4 C+a^2 b^2 (3 A+8 C)\right ) \sin (c+d x)}{6 b^3 \left (a^2-b^2\right )^2 d (a+b \cos (c+d x))^2}-\frac{\left (4 A b^6+9 a^6 C+2 a^2 b^4 (7 A+17 C)-a^4 b^2 (3 A+28 C)\right ) \sin (c+d x)}{6 b^3 \left (a^2-b^2\right )^3 d (a+b \cos (c+d x))}+\frac{\int \frac{3 a b^2 \left (a^2 b^2 (A-2 C)+a^4 C+2 b^4 (2 A+3 C)\right )+6 b \left (a^2-b^2\right )^3 C \cos (c+d x)}{a+b \cos (c+d x)} \, dx}{6 b^4 \left (a^2-b^2\right )^3}\\ &=\frac{C x}{b^4}-\frac{\left (A b^2+a^2 C\right ) \cos ^2(c+d x) \sin (c+d x)}{3 b \left (a^2-b^2\right ) d (a+b \cos (c+d x))^3}-\frac{a \left (2 A b^4-3 a^4 C+a^2 b^2 (3 A+8 C)\right ) \sin (c+d x)}{6 b^3 \left (a^2-b^2\right )^2 d (a+b \cos (c+d x))^2}-\frac{\left (4 A b^6+9 a^6 C+2 a^2 b^4 (7 A+17 C)-a^4 b^2 (3 A+28 C)\right ) \sin (c+d x)}{6 b^3 \left (a^2-b^2\right )^3 d (a+b \cos (c+d x))}+\frac{\left (a \left (a^2 b^4 (A-8 C)-2 a^6 C+7 a^4 b^2 C+4 b^6 (A+2 C)\right )\right ) \int \frac{1}{a+b \cos (c+d x)} \, dx}{2 b^4 \left (a^2-b^2\right )^3}\\ &=\frac{C x}{b^4}-\frac{\left (A b^2+a^2 C\right ) \cos ^2(c+d x) \sin (c+d x)}{3 b \left (a^2-b^2\right ) d (a+b \cos (c+d x))^3}-\frac{a \left (2 A b^4-3 a^4 C+a^2 b^2 (3 A+8 C)\right ) \sin (c+d x)}{6 b^3 \left (a^2-b^2\right )^2 d (a+b \cos (c+d x))^2}-\frac{\left (4 A b^6+9 a^6 C+2 a^2 b^4 (7 A+17 C)-a^4 b^2 (3 A+28 C)\right ) \sin (c+d x)}{6 b^3 \left (a^2-b^2\right )^3 d (a+b \cos (c+d x))}+\frac{\left (a \left (a^2 b^4 (A-8 C)-2 a^6 C+7 a^4 b^2 C+4 b^6 (A+2 C)\right )\right ) \operatorname{Subst}\left (\int \frac{1}{a+b+(a-b) x^2} \, dx,x,\tan \left (\frac{1}{2} (c+d x)\right )\right )}{b^4 \left (a^2-b^2\right )^3 d}\\ &=\frac{C x}{b^4}+\frac{a \left (a^2 A b^4+4 A b^6-2 a^6 C+7 a^4 b^2 C-8 a^2 b^4 C+8 b^6 C\right ) \tan ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a+b}}\right )}{(a-b)^{7/2} b^4 (a+b)^{7/2} d}-\frac{\left (A b^2+a^2 C\right ) \cos ^2(c+d x) \sin (c+d x)}{3 b \left (a^2-b^2\right ) d (a+b \cos (c+d x))^3}-\frac{a \left (2 A b^4-3 a^4 C+a^2 b^2 (3 A+8 C)\right ) \sin (c+d x)}{6 b^3 \left (a^2-b^2\right )^2 d (a+b \cos (c+d x))^2}-\frac{\left (4 A b^6+9 a^6 C+2 a^2 b^4 (7 A+17 C)-a^4 b^2 (3 A+28 C)\right ) \sin (c+d x)}{6 b^3 \left (a^2-b^2\right )^3 d (a+b \cos (c+d x))}\\ \end{align*}

Mathematica [B]  time = 6.23494, size = 723, normalized size = 2.38 \[ -\frac{\frac{-6 a^5 A b^4 \sin (2 (c+d x))+51 a^4 A b^5 \sin (c+d x)-a^4 A b^5 \sin (3 (c+d x))+54 a^3 A b^6 \sin (2 (c+d x))+18 a^2 A b^7 \sin (c+d x)+10 a^2 A b^7 \sin (3 (c+d x))+30 a^7 b^2 C \sin (2 (c+d x))-57 a^6 b^3 C \sin (c+d x)+11 a^6 b^3 C \sin (3 (c+d x))-90 a^5 b^4 C \sin (2 (c+d x))+72 a^4 b^5 C \sin (c+d x)-32 a^4 b^5 C \sin (3 (c+d x))+120 a^3 b^6 C \sin (2 (c+d x))+36 a^2 b^7 C \sin (c+d x)+36 a^2 b^7 C \sin (3 (c+d x))-6 a^6 b^3 c C \cos (3 (c+d x))-6 a^6 b^3 C d x \cos (3 (c+d x))+18 a^4 b^5 c C \cos (3 (c+d x))+18 a^4 b^5 C d x \cos (3 (c+d x))-18 a^2 b^7 c C \cos (3 (c+d x))-18 a^2 b^7 C d x \cos (3 (c+d x))-36 a b^2 C \left (a^2-b^2\right )^3 (c+d x) \cos (2 (c+d x))+18 b C \left (b^2-a^2\right )^3 \left (4 a^2+b^2\right ) (c+d x) \cos (c+d x)+36 a^7 b^2 c C+36 a^5 b^4 c C-84 a^3 b^6 c C+36 a^7 b^2 C d x+36 a^5 b^4 C d x-84 a^3 b^6 C d x+24 a^8 b C \sin (c+d x)-24 a^9 c C-24 a^9 C d x+12 a A b^8 \sin (2 (c+d x))+36 a b^8 c C+36 a b^8 C d x+6 A b^9 \sin (c+d x)+6 A b^9 \sin (3 (c+d x))+6 b^9 c C \cos (3 (c+d x))+6 b^9 C d x \cos (3 (c+d x))}{\left (a^2-b^2\right )^3 (a+b \cos (c+d x))^3}+\frac{24 a \left (-a^2 b^4 (A-8 C)-7 a^4 b^2 C+2 a^6 C-4 b^6 (A+2 C)\right ) \tanh ^{-1}\left (\frac{(a-b) \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{b^2-a^2}}\right )}{\left (b^2-a^2\right )^{7/2}}}{24 b^4 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(Cos[c + d*x]^2*(A + C*Cos[c + d*x]^2))/(a + b*Cos[c + d*x])^4,x]

[Out]

-((24*a*(-(a^2*b^4*(A - 8*C)) + 2*a^6*C - 7*a^4*b^2*C - 4*b^6*(A + 2*C))*ArcTanh[((a - b)*Tan[(c + d*x)/2])/Sq
rt[-a^2 + b^2]])/(-a^2 + b^2)^(7/2) + (-24*a^9*c*C + 36*a^7*b^2*c*C + 36*a^5*b^4*c*C - 84*a^3*b^6*c*C + 36*a*b
^8*c*C - 24*a^9*C*d*x + 36*a^7*b^2*C*d*x + 36*a^5*b^4*C*d*x - 84*a^3*b^6*C*d*x + 36*a*b^8*C*d*x + 18*b*(-a^2 +
 b^2)^3*(4*a^2 + b^2)*C*(c + d*x)*Cos[c + d*x] - 36*a*b^2*(a^2 - b^2)^3*C*(c + d*x)*Cos[2*(c + d*x)] - 6*a^6*b
^3*c*C*Cos[3*(c + d*x)] + 18*a^4*b^5*c*C*Cos[3*(c + d*x)] - 18*a^2*b^7*c*C*Cos[3*(c + d*x)] + 6*b^9*c*C*Cos[3*
(c + d*x)] - 6*a^6*b^3*C*d*x*Cos[3*(c + d*x)] + 18*a^4*b^5*C*d*x*Cos[3*(c + d*x)] - 18*a^2*b^7*C*d*x*Cos[3*(c
+ d*x)] + 6*b^9*C*d*x*Cos[3*(c + d*x)] + 51*a^4*A*b^5*Sin[c + d*x] + 18*a^2*A*b^7*Sin[c + d*x] + 6*A*b^9*Sin[c
 + d*x] + 24*a^8*b*C*Sin[c + d*x] - 57*a^6*b^3*C*Sin[c + d*x] + 72*a^4*b^5*C*Sin[c + d*x] + 36*a^2*b^7*C*Sin[c
 + d*x] - 6*a^5*A*b^4*Sin[2*(c + d*x)] + 54*a^3*A*b^6*Sin[2*(c + d*x)] + 12*a*A*b^8*Sin[2*(c + d*x)] + 30*a^7*
b^2*C*Sin[2*(c + d*x)] - 90*a^5*b^4*C*Sin[2*(c + d*x)] + 120*a^3*b^6*C*Sin[2*(c + d*x)] - a^4*A*b^5*Sin[3*(c +
 d*x)] + 10*a^2*A*b^7*Sin[3*(c + d*x)] + 6*A*b^9*Sin[3*(c + d*x)] + 11*a^6*b^3*C*Sin[3*(c + d*x)] - 32*a^4*b^5
*C*Sin[3*(c + d*x)] + 36*a^2*b^7*C*Sin[3*(c + d*x)])/((a^2 - b^2)^3*(a + b*Cos[c + d*x])^3))/(24*b^4*d)

________________________________________________________________________________________

Maple [B]  time = 0.043, size = 2314, normalized size = 7.6 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^2*(A+C*cos(d*x+c)^2)/(a+b*cos(d*x+c))^4,x)

[Out]

2/d*b^2/(a*tan(1/2*d*x+1/2*c)^2-tan(1/2*d*x+1/2*c)^2*b+a+b)^3*a/(a+b)/(a^3-3*a^2*b+3*a*b^2-b^3)*tan(1/2*d*x+1/
2*c)*A-2/d*b^2/(a*tan(1/2*d*x+1/2*c)^2-tan(1/2*d*x+1/2*c)^2*b+a+b)^3*a/(a-b)/(a^3+3*a^2*b+3*a*b^2+b^3)*tan(1/2
*d*x+1/2*c)^5*A+1/d*a^3/(a^6-3*a^4*b^2+3*a^2*b^4-b^6)/((a+b)*(a-b))^(1/2)*arctan((a-b)*tan(1/2*d*x+1/2*c)/((a+
b)*(a-b))^(1/2))*A-8/d*a^3/(a^6-3*a^4*b^2+3*a^2*b^4-b^6)/((a+b)*(a-b))^(1/2)*arctan((a-b)*tan(1/2*d*x+1/2*c)/(
(a+b)*(a-b))^(1/2))*C+2/d/b^4*arctan(tan(1/2*d*x+1/2*c))*C+4/d/(a*tan(1/2*d*x+1/2*c)^2-tan(1/2*d*x+1/2*c)^2*b+
a+b)^3*a^3/(a+b)/(a^3-3*a^2*b+3*a*b^2-b^3)*tan(1/2*d*x+1/2*c)*C-4/d/(a*tan(1/2*d*x+1/2*c)^2-tan(1/2*d*x+1/2*c)
^2*b+a+b)^3*a^3/(a-b)/(a^3+3*a^2*b+3*a*b^2+b^3)*tan(1/2*d*x+1/2*c)^5*C-2/d*b^3/(a*tan(1/2*d*x+1/2*c)^2-tan(1/2
*d*x+1/2*c)^2*b+a+b)^3/(a+b)/(a^3-3*a^2*b+3*a*b^2-b^3)*tan(1/2*d*x+1/2*c)*A-2/d*b^3/(a*tan(1/2*d*x+1/2*c)^2-ta
n(1/2*d*x+1/2*c)^2*b+a+b)^3/(a-b)/(a^3+3*a^2*b+3*a*b^2+b^3)*tan(1/2*d*x+1/2*c)^5*A+8/d*b^2*a/(a^6-3*a^4*b^2+3*
a^2*b^4-b^6)/((a+b)*(a-b))^(1/2)*arctan((a-b)*tan(1/2*d*x+1/2*c)/((a+b)*(a-b))^(1/2))*C-4/d*b^3/(a*tan(1/2*d*x
+1/2*c)^2-tan(1/2*d*x+1/2*c)^2*b+a+b)^3/(a^2+2*a*b+b^2)/(a^2-2*a*b+b^2)*tan(1/2*d*x+1/2*c)^3*A-1/d*a^3/(a*tan(
1/2*d*x+1/2*c)^2-tan(1/2*d*x+1/2*c)^2*b+a+b)^3/(a-b)/(a^3+3*a^2*b+3*a*b^2+b^3)*tan(1/2*d*x+1/2*c)^5*A+4/d*a*b^
2/(a^6-3*a^4*b^2+3*a^2*b^4-b^6)/((a+b)*(a-b))^(1/2)*arctan((a-b)*tan(1/2*d*x+1/2*c)/((a+b)*(a-b))^(1/2))*A-2/d
*a^7/b^4/(a^6-3*a^4*b^2+3*a^2*b^4-b^6)/((a+b)*(a-b))^(1/2)*arctan((a-b)*tan(1/2*d*x+1/2*c)/((a+b)*(a-b))^(1/2)
)*C+7/d*a^5/b^2/(a^6-3*a^4*b^2+3*a^2*b^4-b^6)/((a+b)*(a-b))^(1/2)*arctan((a-b)*tan(1/2*d*x+1/2*c)/((a+b)*(a-b)
)^(1/2))*C+1/d*a^3/(a*tan(1/2*d*x+1/2*c)^2-tan(1/2*d*x+1/2*c)^2*b+a+b)^3/(a+b)/(a^3-3*a^2*b+3*a*b^2-b^3)*tan(1
/2*d*x+1/2*c)*A+6/d*a^4/b/(a*tan(1/2*d*x+1/2*c)^2-tan(1/2*d*x+1/2*c)^2*b+a+b)^3/(a-b)/(a^3+3*a^2*b+3*a*b^2+b^3
)*tan(1/2*d*x+1/2*c)^5*C-28/3/d*a^2*b/(a*tan(1/2*d*x+1/2*c)^2-tan(1/2*d*x+1/2*c)^2*b+a+b)^3/(a^2+2*a*b+b^2)/(a
^2-2*a*b+b^2)*tan(1/2*d*x+1/2*c)^3*A-24/d*b/(a*tan(1/2*d*x+1/2*c)^2-tan(1/2*d*x+1/2*c)^2*b+a+b)^3/(a^2+2*a*b+b
^2)/(a^2-2*a*b+b^2)*tan(1/2*d*x+1/2*c)^3*C*a^2-12/d*b/(a*tan(1/2*d*x+1/2*c)^2-tan(1/2*d*x+1/2*c)^2*b+a+b)^3/(a
+b)/(a^3-3*a^2*b+3*a*b^2-b^3)*tan(1/2*d*x+1/2*c)*C*a^2-12/d*b/(a*tan(1/2*d*x+1/2*c)^2-tan(1/2*d*x+1/2*c)^2*b+a
+b)^3/(a-b)/(a^3+3*a^2*b+3*a*b^2+b^3)*tan(1/2*d*x+1/2*c)^5*C*a^2+1/d*a^5/b^2/(a*tan(1/2*d*x+1/2*c)^2-tan(1/2*d
*x+1/2*c)^2*b+a+b)^3/(a-b)/(a^3+3*a^2*b+3*a*b^2+b^3)*tan(1/2*d*x+1/2*c)^5*C-6/d*a^2*b/(a*tan(1/2*d*x+1/2*c)^2-
tan(1/2*d*x+1/2*c)^2*b+a+b)^3/(a-b)/(a^3+3*a^2*b+3*a*b^2+b^3)*tan(1/2*d*x+1/2*c)^5*A-6/d*a^2*b/(a*tan(1/2*d*x+
1/2*c)^2-tan(1/2*d*x+1/2*c)^2*b+a+b)^3/(a+b)/(a^3-3*a^2*b+3*a*b^2-b^3)*tan(1/2*d*x+1/2*c)*A-2/d*a^6/b^3/(a*tan
(1/2*d*x+1/2*c)^2-tan(1/2*d*x+1/2*c)^2*b+a+b)^3/(a+b)/(a^3-3*a^2*b+3*a*b^2-b^3)*tan(1/2*d*x+1/2*c)*C-1/d*a^5/b
^2/(a*tan(1/2*d*x+1/2*c)^2-tan(1/2*d*x+1/2*c)^2*b+a+b)^3/(a+b)/(a^3-3*a^2*b+3*a*b^2-b^3)*tan(1/2*d*x+1/2*c)*C-
4/d*a^6/b^3/(a*tan(1/2*d*x+1/2*c)^2-tan(1/2*d*x+1/2*c)^2*b+a+b)^3/(a^2+2*a*b+b^2)/(a^2-2*a*b+b^2)*tan(1/2*d*x+
1/2*c)^3*C-2/d*a^6/b^3/(a*tan(1/2*d*x+1/2*c)^2-tan(1/2*d*x+1/2*c)^2*b+a+b)^3/(a-b)/(a^3+3*a^2*b+3*a*b^2+b^3)*t
an(1/2*d*x+1/2*c)^5*C+6/d*a^4/b/(a*tan(1/2*d*x+1/2*c)^2-tan(1/2*d*x+1/2*c)^2*b+a+b)^3/(a+b)/(a^3-3*a^2*b+3*a*b
^2-b^3)*tan(1/2*d*x+1/2*c)*C+44/3/d*a^4/b/(a*tan(1/2*d*x+1/2*c)^2-tan(1/2*d*x+1/2*c)^2*b+a+b)^3/(a^2+2*a*b+b^2
)/(a^2-2*a*b+b^2)*tan(1/2*d*x+1/2*c)^3*C

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*(A+C*cos(d*x+c)^2)/(a+b*cos(d*x+c))^4,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 3.15287, size = 3852, normalized size = 12.67 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*(A+C*cos(d*x+c)^2)/(a+b*cos(d*x+c))^4,x, algorithm="fricas")

[Out]

[1/12*(12*(C*a^8*b^3 - 4*C*a^6*b^5 + 6*C*a^4*b^7 - 4*C*a^2*b^9 + C*b^11)*d*x*cos(d*x + c)^3 + 36*(C*a^9*b^2 -
4*C*a^7*b^4 + 6*C*a^5*b^6 - 4*C*a^3*b^8 + C*a*b^10)*d*x*cos(d*x + c)^2 + 36*(C*a^10*b - 4*C*a^8*b^3 + 6*C*a^6*
b^5 - 4*C*a^4*b^7 + C*a^2*b^9)*d*x*cos(d*x + c) + 12*(C*a^11 - 4*C*a^9*b^2 + 6*C*a^7*b^4 - 4*C*a^5*b^6 + C*a^3
*b^8)*d*x - 3*(2*C*a^10 - 7*C*a^8*b^2 - (A - 8*C)*a^6*b^4 - 4*(A + 2*C)*a^4*b^6 + (2*C*a^7*b^3 - 7*C*a^5*b^5 -
 (A - 8*C)*a^3*b^7 - 4*(A + 2*C)*a*b^9)*cos(d*x + c)^3 + 3*(2*C*a^8*b^2 - 7*C*a^6*b^4 - (A - 8*C)*a^4*b^6 - 4*
(A + 2*C)*a^2*b^8)*cos(d*x + c)^2 + 3*(2*C*a^9*b - 7*C*a^7*b^3 - (A - 8*C)*a^5*b^5 - 4*(A + 2*C)*a^3*b^7)*cos(
d*x + c))*sqrt(-a^2 + b^2)*log((2*a*b*cos(d*x + c) + (2*a^2 - b^2)*cos(d*x + c)^2 - 2*sqrt(-a^2 + b^2)*(a*cos(
d*x + c) + b)*sin(d*x + c) - a^2 + 2*b^2)/(b^2*cos(d*x + c)^2 + 2*a*b*cos(d*x + c) + a^2)) - 2*(6*C*a^10*b - 2
3*C*a^8*b^3 + (13*A + 43*C)*a^6*b^5 - (11*A + 26*C)*a^4*b^7 - 2*A*a^2*b^9 + (11*C*a^8*b^3 - (A + 43*C)*a^6*b^5
 + (11*A + 68*C)*a^4*b^7 - 4*(A + 9*C)*a^2*b^9 - 6*A*b^11)*cos(d*x + c)^2 + 3*(5*C*a^9*b^2 - (A + 20*C)*a^7*b^
4 + 5*(2*A + 7*C)*a^5*b^6 - (7*A + 20*C)*a^3*b^8 - 2*A*a*b^10)*cos(d*x + c))*sin(d*x + c))/((a^8*b^7 - 4*a^6*b
^9 + 6*a^4*b^11 - 4*a^2*b^13 + b^15)*d*cos(d*x + c)^3 + 3*(a^9*b^6 - 4*a^7*b^8 + 6*a^5*b^10 - 4*a^3*b^12 + a*b
^14)*d*cos(d*x + c)^2 + 3*(a^10*b^5 - 4*a^8*b^7 + 6*a^6*b^9 - 4*a^4*b^11 + a^2*b^13)*d*cos(d*x + c) + (a^11*b^
4 - 4*a^9*b^6 + 6*a^7*b^8 - 4*a^5*b^10 + a^3*b^12)*d), 1/6*(6*(C*a^8*b^3 - 4*C*a^6*b^5 + 6*C*a^4*b^7 - 4*C*a^2
*b^9 + C*b^11)*d*x*cos(d*x + c)^3 + 18*(C*a^9*b^2 - 4*C*a^7*b^4 + 6*C*a^5*b^6 - 4*C*a^3*b^8 + C*a*b^10)*d*x*co
s(d*x + c)^2 + 18*(C*a^10*b - 4*C*a^8*b^3 + 6*C*a^6*b^5 - 4*C*a^4*b^7 + C*a^2*b^9)*d*x*cos(d*x + c) + 6*(C*a^1
1 - 4*C*a^9*b^2 + 6*C*a^7*b^4 - 4*C*a^5*b^6 + C*a^3*b^8)*d*x - 3*(2*C*a^10 - 7*C*a^8*b^2 - (A - 8*C)*a^6*b^4 -
 4*(A + 2*C)*a^4*b^6 + (2*C*a^7*b^3 - 7*C*a^5*b^5 - (A - 8*C)*a^3*b^7 - 4*(A + 2*C)*a*b^9)*cos(d*x + c)^3 + 3*
(2*C*a^8*b^2 - 7*C*a^6*b^4 - (A - 8*C)*a^4*b^6 - 4*(A + 2*C)*a^2*b^8)*cos(d*x + c)^2 + 3*(2*C*a^9*b - 7*C*a^7*
b^3 - (A - 8*C)*a^5*b^5 - 4*(A + 2*C)*a^3*b^7)*cos(d*x + c))*sqrt(a^2 - b^2)*arctan(-(a*cos(d*x + c) + b)/(sqr
t(a^2 - b^2)*sin(d*x + c))) - (6*C*a^10*b - 23*C*a^8*b^3 + (13*A + 43*C)*a^6*b^5 - (11*A + 26*C)*a^4*b^7 - 2*A
*a^2*b^9 + (11*C*a^8*b^3 - (A + 43*C)*a^6*b^5 + (11*A + 68*C)*a^4*b^7 - 4*(A + 9*C)*a^2*b^9 - 6*A*b^11)*cos(d*
x + c)^2 + 3*(5*C*a^9*b^2 - (A + 20*C)*a^7*b^4 + 5*(2*A + 7*C)*a^5*b^6 - (7*A + 20*C)*a^3*b^8 - 2*A*a*b^10)*co
s(d*x + c))*sin(d*x + c))/((a^8*b^7 - 4*a^6*b^9 + 6*a^4*b^11 - 4*a^2*b^13 + b^15)*d*cos(d*x + c)^3 + 3*(a^9*b^
6 - 4*a^7*b^8 + 6*a^5*b^10 - 4*a^3*b^12 + a*b^14)*d*cos(d*x + c)^2 + 3*(a^10*b^5 - 4*a^8*b^7 + 6*a^6*b^9 - 4*a
^4*b^11 + a^2*b^13)*d*cos(d*x + c) + (a^11*b^4 - 4*a^9*b^6 + 6*a^7*b^8 - 4*a^5*b^10 + a^3*b^12)*d)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**2*(A+C*cos(d*x+c)**2)/(a+b*cos(d*x+c))**4,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B]  time = 1.80198, size = 1141, normalized size = 3.75 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*(A+C*cos(d*x+c)^2)/(a+b*cos(d*x+c))^4,x, algorithm="giac")

[Out]

1/3*(3*(2*C*a^7 - 7*C*a^5*b^2 - A*a^3*b^4 + 8*C*a^3*b^4 - 4*A*a*b^6 - 8*C*a*b^6)*(pi*floor(1/2*(d*x + c)/pi +
1/2)*sgn(-2*a + 2*b) + arctan(-(a*tan(1/2*d*x + 1/2*c) - b*tan(1/2*d*x + 1/2*c))/sqrt(a^2 - b^2)))/((a^6*b^4 -
 3*a^4*b^6 + 3*a^2*b^8 - b^10)*sqrt(a^2 - b^2)) + 3*(d*x + c)*C/b^4 - (6*C*a^8*tan(1/2*d*x + 1/2*c)^5 - 15*C*a
^7*b*tan(1/2*d*x + 1/2*c)^5 - 6*C*a^6*b^2*tan(1/2*d*x + 1/2*c)^5 + 3*A*a^5*b^3*tan(1/2*d*x + 1/2*c)^5 + 45*C*a
^5*b^3*tan(1/2*d*x + 1/2*c)^5 + 12*A*a^4*b^4*tan(1/2*d*x + 1/2*c)^5 - 6*C*a^4*b^4*tan(1/2*d*x + 1/2*c)^5 - 27*
A*a^3*b^5*tan(1/2*d*x + 1/2*c)^5 - 60*C*a^3*b^5*tan(1/2*d*x + 1/2*c)^5 + 12*A*a^2*b^6*tan(1/2*d*x + 1/2*c)^5 +
 36*C*a^2*b^6*tan(1/2*d*x + 1/2*c)^5 - 6*A*a*b^7*tan(1/2*d*x + 1/2*c)^5 + 6*A*b^8*tan(1/2*d*x + 1/2*c)^5 + 12*
C*a^8*tan(1/2*d*x + 1/2*c)^3 - 56*C*a^6*b^2*tan(1/2*d*x + 1/2*c)^3 + 28*A*a^4*b^4*tan(1/2*d*x + 1/2*c)^3 + 116
*C*a^4*b^4*tan(1/2*d*x + 1/2*c)^3 - 16*A*a^2*b^6*tan(1/2*d*x + 1/2*c)^3 - 72*C*a^2*b^6*tan(1/2*d*x + 1/2*c)^3
- 12*A*b^8*tan(1/2*d*x + 1/2*c)^3 + 6*C*a^8*tan(1/2*d*x + 1/2*c) + 15*C*a^7*b*tan(1/2*d*x + 1/2*c) - 6*C*a^6*b
^2*tan(1/2*d*x + 1/2*c) - 3*A*a^5*b^3*tan(1/2*d*x + 1/2*c) - 45*C*a^5*b^3*tan(1/2*d*x + 1/2*c) + 12*A*a^4*b^4*
tan(1/2*d*x + 1/2*c) - 6*C*a^4*b^4*tan(1/2*d*x + 1/2*c) + 27*A*a^3*b^5*tan(1/2*d*x + 1/2*c) + 60*C*a^3*b^5*tan
(1/2*d*x + 1/2*c) + 12*A*a^2*b^6*tan(1/2*d*x + 1/2*c) + 36*C*a^2*b^6*tan(1/2*d*x + 1/2*c) + 6*A*a*b^7*tan(1/2*
d*x + 1/2*c) + 6*A*b^8*tan(1/2*d*x + 1/2*c))/((a^6*b^3 - 3*a^4*b^5 + 3*a^2*b^7 - b^9)*(a*tan(1/2*d*x + 1/2*c)^
2 - b*tan(1/2*d*x + 1/2*c)^2 + a + b)^3))/d